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1. (20) Consider a wide sense stationary random sequence X[n] with mean function µX , a constant, and
correlation function RXX [m]. Form a random process as

X(t) =
∞
∑

n=−∞

X[n]
sin π(t − nT )/T

π(t − nT )/T
−∞ < t < ∞

In what follows, we assume the infinite sums converge, and so, do not worry about stochastic convergence
issues.

(a) Find µX(t) in terms of µX . Simplify your answer as much as possible.

(b) Find RXX(t1, t2) in terms of RXX [m]. Is X(t) WSS?

Hint: The sampling theorem from linear systems theory states that any bandlimited deterministic function
g(t) can be recovered exactly from its evenly spaced samples, i.e.,

g(t) =
∞
∑

n=−∞

g(nT )
sinπ(t − nT )/T

π(t − nT )/T
,

when the radian bandwidth of the function g(t) is π/T or less.

2. (15) Let the random process Y (t) be given as

Y (t) = X(t) + 0.3
dX(t)

dt
,

where X(t) is a random process with mean function µX(t) = 5t, and covariance function

CXX(t1, t2) =
σ2

1 + α(t1 − t2)2
, α > 0

(a) Find the mean function µY (t).

(b) Find the covariance function CY Y (t1, t2).

(c) Is the random process Y (t) wide sense stationary? Why?



3. (20 points) A wide sense stationary and zero-mean random process Y (t) has sample functions consisting
of successive rectangular pulses of random amplitude and duration as shown below. The pdf for the pulse
width is

fW (w) =

{

λe−λw, w ≥ 0,
0, w < 0,

with λ > 0. The amplitude of each pulse is a random variable X (independent of W ) with mean 0 and
variance σ2

X . Successive amplitudes and pulse widths are independent.

0

Y(t)

t

(a) Find the autocorrelation function RY Y (τ) = E[Y (t + τ)Y (t)].

(b) Find the corresponding power spectral density SY Y (ω).

[Hint: First find the conditional autocorrelation function E[Y (t + τ)Y (t)|W = w], where t is assumed to
be at the start of a pulse (per WSS assumption for Y (t))].

4. (20) We consider here the idea of using white noise as an approximation to a smoother process which is
input to a lowpass filter. The output process from the filter is then investigated to determine the error
resulting from the white noise approximation. Let the stationary random process X(t) have zero-mean
and autocovariance function

CXX(τ) =
1

2τ0
exp(−|τ |/τ0)

which can be written as h(τ) ∗ h(−τ) with h(τ) = 1
τ0

e−τ/τ0u(τ).

(a) Let X(t) be input to a lowpass filter with transfer function

G(ω) =

{

1, |ω| < ω0

0, else

Denote the filter output by Y (t) and find the output power spectral density SY Y (ω).

(b) Alternatively, we may exite the system above directly with a standard white noise process W (t), with
mean zero and CWW (τ) = δ(τ). Call the output V (t) and find the output power spectral density
SV V (ω).

(c) Show that for |ω0τ0| � 1, SY Y ≈ SV V , and find an upper bound on the power error

|RV V (0) − RY Y (0)|.

Hint: Upper bound (ωτ0)2

1+(ωτ0)2 with (ω0τ0)2

1+(ω0τ0)2 .
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5. (25) Let N(t) be a Poisson process, and suppose we form a phase modulated random process

Y (t) = a cos(2πft + πN(t))

(a) Plot a sample function of Y (t) corresponding to a typical sample function of N(t).

(b) Find the joint density function of Y (t1) and Y (t2). Hint: Use the independent increments property
of N(t).

(c) Find the mean and autocorrelation functions of Y (t).

(d) Is Y (t) strictly stationary or wide sense stationary? Explain.

(e) A random process Z(t) is called wide sense cyclostationary if there is some T > 0 such that its mean

µZ(t) = µZ(t + kT )

for all t and k, and, its autocorrelation

RZZ(t1, t2) = RZZ(t1 + kT, t2 + kT )

for all t1, t2, and k. Is Y (t) wide sense cyclostationary, or aysmptotically wide sense cyclostationary
(i.e., as t1 → ∞)? Explain.
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